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Abstract High-quality automatic shadow detection remains
a challenging problem in image processing and computer
vision. Existing techniques for shadow detection typically
make use of deep learning strategies to obtain accurate sha-
dow detection results, at the cost of demanding high pro-
cessing time, making their use unsuitable for augmented re-
ality and robotic applications. In this paper, we propose a
novel approach to perform high-quality shadow detection in
real time. To do so, we convert an input image into dif-
ferent color spaces to perform multi-channel binarization
and detect different shadow regions in the image. Then, a
filtering algorithm is proposed to remove the noisy false-
positive shadow regions on the basis of their sizes. Experi-
mental results evaluated in two different datasets show that
the proposed approach may run entirely on the GPU, requir-
ing only ≈ 13 milliseconds to detect shadows in an image
with 3840×2160 (4k) resolution. That makes our approach
about 1.8 (66 ×) to 4.6 (37,284 ×) orders of magnitude
faster than related work for 4k resolution images, at the cost
of only ≈ 5% of accuracy loss compared to the best results
achieved for each dataset.

Keywords Shadow detection · Parallel processing ·
Binarization · Noise removal · Real time

1 Introduction

Shadow detection is desirable in several applications because
it improves the visual understanding of a scene. Specifi-
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cally for augmented reality applications, shadows must be
detected in real time to assist in the estimation of the dy-
namic lighting conditions of a real scene, further enabling
the photorealistic rendering of a virtual content in an aug-
mented scene [16].

Shadow detection in single images is a difficult task be-
cause not only common images include limited information
of a given scene, but these images may also include noise
and distortion artifacts produced by the camera. However,
despite these shortcomings, humans can easily detect shad-
ows when looking at single images. In this sense, thanks
to the collection and availability of different datasets for
shadow detection [27,6,24,26], machine learning techniques
have been largely applied to train the computer to be able to
solve this task of shadow detection in single images (Section
2). While high accuracy rates have been achieved by the use
of deep neural networks to train the algorithms, little effort
has been given to the design of efficient, real-time solutions
to the shadow detection problem.

In this work, we propose, to the best of our knowledge,
the first accurate algorithm for real-time shadow detection
that achieves a running time suitable for augmented reality
and robotic applications. We show that, by converting the in-
put image into distinct color spaces, that are used as a basis
to a multi-channel binarization, we are able to detect the po-
tential shadow regions located in the image. Then, the noisy
false-positive shadow regions previously estimated are ef-
fectively detected and removed by the use of a new filtering
algorithm.

In this sense, our main contributions can be summarized
as follows:

1. A multi-channel binarization algorithm that locates po-
tential shadow regions in an image;

2. A filtering algorithm that removes small, noisy false-
positive shadow regions from a binary image, further
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improving the accuracy of our multi-channel binariza-
tion solution;

3. An efficient shadow detection algorithm that makes use
of multi-channel binarization and noise removal to achie-
ve results five times faster than the state-of-the-art, while
obtaining an accuracy loss of only ≈ 5%, in terms of
Balance Error Rate (BER), as compared to best results
achieved by related work;

4. An implementation of the proposed algorithm on the
Graphics Processing Unit (GPU), outperforming state-
of-the-art works in terms of processing time by 1.8 to
4.6 orders of magnitude for high-resolution images;

2 Related Work

In this section, we focus on the review of relevant related
work that used a data-driven approach for single image sha-
dow detection. An in-depth review of the existing shadow
detection techniques for moving cast shadows is beyond the
scope of this paper. We refer the reader to the surveys of
Al-Najdawi et al. [1] and Sanin et al. [20].

Zhu et al. [27] were one of the first authors to handle
shadow detection from single images using a data-driven ap-
proach. They used handcrafted shadow variant and shadow
invariant features like intensity difference, local maximum
intensity, smoothness, skewness, gradient similarity, texture
similarity, discrete entropy and edge response to perform
shadow detection on monochromatic images. Since no data
set was available at the time of their work, they proposed
a novel dataset, today called University of Central Florida
(UCF) dataset.

Guo et al. [6,7] proposed that the shadow detection must
be performed by comparing the illumination condition of
different regions of the image. By using measurements like
the distance between color and texture histograms, ratio of
color intensity, chromatic alignment and Euclidean distance
between different regions, the authors trained a Support Vec-
tor Machine (SVM) to improve the accuracy of the shadow
detection on the UCF dataset and on the University of Illi-
nois at Urbana Champaign (UIUC) dataset proposed by the
own authors.

Vicente et al. [25] extended the work of Guo et al. by
first performing superpixel segmentation to cluster the im-
age into different regions. Then, a single SVM classifier [25]
or a multi-kernel Least-Squares SVM classifier [22,23] with
leave-one-out optimization could be used to improve the ac-
curacy of the work of Guo et al. on the UIUC dataset. The
drawback of these approaches is that they are not scalable
for large training data. To solve this problem, the authors
[24] extended their work to use stacked Convolutional Neu-
ral Networks (CNN) with a Fully Connected Network. This
approach handled better the new large Stony Brook Univer-
sity (SBU) dataset proposed by the authors.

Despite the effort of the aforementioned techniques in
the design of handcrafted features for shadow detection, with
the advent and popularity of deep learning [15], many tech-
niques have been proposed to use this technology to auto-
matically learn the best features for shadow detection.

Khan et al. [11,12] were the first to make use of deep
learning for shadow detection. They trained one CNN for
detecting shadow regions over segmented superpixels and
another CNN for detecting shadow boundaries, on the ba-
sis of boundary regions enhanced with bilateral filtering. Fi-
nally, an edge map computed according to the difference be-
tween adjacent pixels was used in an optimization problem
solved with CRF to enforce local consistency.

Shen et al. [21] trained a CNN by modelling the shadow
detection problem as an optimization function on the basis
of shadow and brightness measurements computed between
distinct regions of the image.

Nguyen et al. [18] adapted the use of a Conditional Gen-
erative Adversarial Network (CGAN) [4,17] to solve the
task of shadow detection from single images. Afterwards,
Wang et al. [26] showed that, by coupling shadow detec-
tion and shadow removal strategies to train Stacked CGAN
on the newly Image Shadow Triplets (ISTD) dataset, they
could improve the accuracy of the shadow detection.

Indeed, the use of deep learning for shadow detection
greatly improved the accuracy of the shadow detection, al-
lowing the generation of the current state-of-the-art results
in all the four datasets already proposed in this field. How-
ever, as reported by the authors of related work, most of the
existing solutions demand hours to train the classifiers and
seconds to detect the shadows of a single image. Hence, un-
til very recently, little effort has been given on the design
of interactive/real-time solutions to the problem of shadow
detection.

Hosseinzadeh et al. [9] segmented the image into super-
pixels, then trained an SVM with the handcrafted features
proposed in related work [6,25] to estimate the probability
that a given superpixel is a shadow region. Afterwards, such
an estimate was used as an input for a patched CNN, that was
used to predict the location of the shadow regions. In their
work, the authors showed that this solution greatly decreases
both training and testing times. However, the algorithm is
less accurate than related work and still demands seconds to
perform shadow detection on the available datasets.

Le et al. [14] made use of an adversarial shadow atten-
uation framework composed of a shadow detection and an
attenuator network to achieve high-quality results at interac-
tive frame rates.

Inspired by the spatial Recurrent Neural Networks, Hu
et al. [10] designed a novel deep learning module to ex-
tract direction-aware spatial context features that allowed
the evaluation of an input image in a global manner, im-
proving the accuracy of the shadow detection.
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Fig. 1 An overview of the proposed real-time shadow detection algorithm. Given an RGB color image (a), we split the original image into six
different channels: red (b), green (c), blue (d), gray (e), Cb (f) and b* (g). Then, we binarize each channel separately, according to the mean values
estimated for each channel (h-m). Afterwards, we multiply some of the binary images previously computed to obtain a noisy shadow detection (n).
To remove the false-positive shadow regions, we first apply a local filtering approach that removes isolated pixels labeled as shadow (o). Then, we
apply a global filtering approach that clusters the remaining shadow regions and discards the false-positive ones that are too small in the image (p).
With such an algorithm, we are able to generate high-quality shadow detection results (q).

Despite the promising results achieved by the aforemen-
tioned techniques, they are still inadequate for real-time ap-
plications because their shadow detection algorithms con-
sume more than 30 milliseconds for a low-sized (e.g., 640×
480) image. A photorealistic augmented reality application,
for instance, must take care of other costly operations, such
as camera pose estimation, tracking, lighting estimation and
virtual data rendering [16]. In this sense, the shadow detec-
tion step must run as fast as possible, consuming just a few
milliseconds of the total frame time of the application.

In this work, we aim to solve this problem of real-time
shadow detection by means of multi-channel binarization
and noisy false-positive shadow removal. Without relying on
the use of training classifiers nor deep learning, we design a
practical approach that makes use of handcrafted features to
achieve a processing time suitable for augmented reality and
robotic applications. By implementing our technique fully
on the GPU, we show that we can achieve results orders of

magnitude faster than the fastest approaches proposed so far
[9,14,10]. By evaluating the proposed approach on two of
the largest datasets available in the literature, we show that
our approach is not only real time, but is also accurate and
generates visually pleasant shadow detection results.

3 Real-Time Shadow Detection

In this section, we introduce our approach for real-time sha-
dow detection. An overview is shown in Figure 1. Taking a
colored RGB image as input (Figure 1-(a)), we convert the
image into different color spaces (Figures 1-(b, c, d, e, f, g)),
which are used as a basis for a multi-channel binarization
(Figures 1-(h, i, j, k, l, m)). That gives us a coarse estimate of
where the shadows are located in the scene (Figure 1-(n)). To
improve the accuracy of the shadow detection, local (Figure
1-(o)) and global filtering steps (Figure 1-(p)) are used to



4 Márcio C. F. Macedo et al.

(a) Original Image (b) Gray Image

(c) Otsu Thresholding (d) Mean Thresholding

Fig. 2 For an image (a) with a bright object (b), Otsu thresholding
overestimates the presence of shadows (c). Mean thresholding is more
robust to illumination conditions (d).

remove non-shadow regions from the final detection (Figure
1-(q)). These steps are detailed in the next subsections.

3.1 Color Space Conversion

Given a colored RGB image (Figure 1-(a)), the first step of
our approach converts the colored image into a grayscale
image, since shadows are typically located in the darker re-
gions of the image, which can be easily detected by analyz-
ing the gray component of an image. Afterwards, we pro-
ceed with the conversion of the input colored image to other
two color spaces, namely: YCrCb and CIE L*a*b*. As al-
ready stated by related work [6,7,25,23,9], the CIE L*a*b*
color space is useful for shadow detection, mainly because
the b* channel is not invariant to the presence of shadows.
Since the b* channel handles the blue-yellow color spectrum
and is efficient for shadow detection, we also compute the
Cb channel in the YCrCb color space to take into account
the blue difference in the chroma components for shadow
detection.

After the conversion of the original image to different
color spaces, we split the relevant channels (red, green, blue,
gray, Cb, and b*) into separate images, as shown in Figures
1-(b, c, d, e, f, g). The separate use of red, green and blue
channels allows us to discard non-shadow regions that have
high intensity in only one of those channels (e.g., brick, sky,
sea, tree, grass).

3.2 Multi-channel Binarization

To detect where the shadow is located in the image, we
need to binarize each of the channels previously computed
on the basis a threshold. Otsu thresholding is a common

Algorithm 1 Shadow detection by multi-channel binariza-
tion
Input: I : the set of binary images,

µ : the set of mean values
w : image’s width,
h : image’s height,
β : a threshold value

Output: Ishadow : an image with shadows detected
1: procedure DETECTSHADOW(I, µ , w, h, β )
2: Ishadow← IgrayICb;
3: if µr > µg or µr > µb then
4: Ishadow← IshadowIr;
5: end if
6: if µg > µr or µg > µb then
7: Ishadow← IshadowIg;
8: end if
9: if µb > µr or µb > µg then

10: Ishadow← IshadowIb;
11: end if
12: Idiff← |Ishadow− Ib*|;
13: c← count zero values from Idiff;
14: if c

wh > β then
15: Ishadow← IshadowIb*;
16: end if
17: return Ishadow;
18: end procedure

alternative for accurate binarization, however, in practice,
we have found that this technique tends to overestimate the
presence of shadows in images with bright objects (Figure
2-(c)). Hence, we opted to perform binarization via mean
thresholding. Let us define the set I= {Ir, Ig, Ib, Igray, ICb, Ib*},
composed of the red, green, blue, gray, Cb and b* single-
channel images with width w and height h, respectively. So,
for each one of the six channel images, we estimate the
mean values µ = {µr,µg,µb,µgray,µCb,µb*} of their pix-
els and scale each mean value by a small scale factor α =

{αr,αg,αb,αgray,αCb,αb*}, that is measured experimentally.
Then, for each pixel I(i, j) of the set I, we make use of the
corresponding mean value µ and scale factor α to perform
traditional binarization as follows

I(i, j) =

{
0 if I(i, j)> µα,

1 otherwise,
(1)

where 0 means that the pixel is potentially located out of
shadow and 1 otherwise. Specially for the Cb image, we
change Eq. (1) to output 1 if I(i, j) > µα and 0 otherwise,
because this channel tends to brighten shadow regions in the
image. This effect is visible in Figure 1-(f).

By using the solution proposed in Eq. (1), whose result
is visible in Figures 1-(h, i, j, k, l, m), we are able to mini-
mize the shadow overestimation problem produced by Otsu
thresholding (Figure 2-(d)), while keeping the binarization
process simple and fast.

Given the six binary images generated with mean thresh-
olding, we need to integrate them into a single binary image
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(a) Original Image (b) Original b* Channel

(c) Binary b* Channel

Fig. 3 Pixels located in the bright sky (a) tend to be darker than shadow
pixels for the b* channel (b), affecting the shadow detection procedure
(c).

Ishadow with the shadows detected. An algorithmic overview
of this step is listed in Algorithm 1. Rather than producing
the single binary image as a direct per-pixel product between
six binary images, we check the relevance of four of the six
binary images before including them into the final product.
Igray and ICb images are relevant to shadow detection, be-
ing always used in the per-pixel product (Line 2 of Algo-
rithm 1). We have found that, out of the RGB channels, only
the most relevant ones should be used for shadow detection.
This relevance is again measured in terms of mean values.
The channel with the lower mean value is discarded from
shadow detection, because we consider that their influence
in the visual perception of the image is lower than the other
channels, and, due to the low intensity of pixels of this color
channel, shadow pixels may be incorrectly discarded during
the binarization process (Lines 3-11 of Algorithm 1). With
respect to the b* channel, we are careful before including
their influence into the final product. For images with a visi-
ble bright sky, the binarization of Ib* produces the inverse of
the expected effect, because the sky region tends to be darker
than the shadow region (Figure 3). To solve this problem,
we first check whether Ib* and Ishadow are relatively similar
to each other. To do so, we take the absolute difference be-
tween both images (Line 12 of Algorithm 1) and count the
number of pixels that have the same intensity in both images
(Line 13 of Algorithm 1). If the similarity between images is
above a threshold β , we include Ib* in the per-pixel product
to generate the final image Ishadow (Lines 14-16 of Algorithm
1).

3.3 Noise Removal

As shown in Figure 1-(n), the output of the previous step
is the generation of a single image that represents poten-
tial shadow pixels with the white color. However, images
captured with conventional cameras, such as webcams and
built-in cameras of smartphones, typically contain noise and

other artifacts that may affect the quality of the shadow de-
tection procedure. In this sense, the multi-channel binariza-
tion of Algorithm 1 may incorrectly label several small re-
gions of the image as false-positive shadow regions. In or-
der to solve this problem and minimize the false-positive
shadow regions of Ishadow, we have designed a two-step fil-
tering algorithm, that is described as follows.

Due to the noise present in the original image, some pix-
els incorrectly assumed to be in shadow are isolated inside a
non-shadow region (see the shadow pixels in close up of Fig-
ure 1-(n)) and vice-versa (see the non-shadow pixels in the
shadow quadrant shown in Figure 1-(n)). To make the vis-
ibility condition of these isolated pixels agree with the one
of their surrounding neighbours, we apply a local filter that
analyzes the neighbourhood region centered at each pixel
and determines whether the visibility condition of the center
pixel must be changed to agree with the visibility condition
of its neighbours.

Following the definition of Eq. (1), let us recall that non-
shadow and shadow pixels store 0 and 1 intensity values,
respectively. Then, for a filter with kernel order of κ × κ

centered at each pixel of Ishadow, we can detect whether the
region inside the local filter is dominated by non-shadow
or shadow pixels simply by counting which one of the val-
ues is more present in the filter kernel, 0 or 1. Considering
Iinput and Ioutput as the input and output images of the pro-
posed filter, this process can be done efficiently, for each
pixel Ioutput(i, j), with box filtering

Ioutput(i, j) =
∑

i+κ

x=i−κ ∑
j+κ

y= j−κ
Iinput(x,y)

κ2 , (2)

Ioutput(i, j) =

{
0 if Ioutput(i, j)≤ φ ,

1 otherwise.

In Eq. (2), we use a simple box filter to estimate the av-
erage intensity inside the filter kernel. Then, if the output
intensity of the box filter is larger than an intensity value φ ,
or, in other words, if more than a pre-defined percentage of
the pixels located inside the kernel have intensity 1, the fil-
ter outputs that the pixel is located in a shadow region and
must be put in shadow. Likewise, if the filter outputs that the
average intensity of the filter region is lower or equal than
φ , the pixel is located in a non-shadow region and must be
considered as a non-shadow pixel.

As shown in Figure 1-(o), by computing Eq. (2) over
Ishadow, we can minimize the false-positive shadow regions
generated by the multi-channel binarization algorithm listed
in Algorithm 1. However, as shown in the closeup of Figure
1-(o), the use of a local filter works well for isolated false-
positive pixels, but does not work well in isolated false-
positive shadow regions, with dozens of false-positive pixels
inside them. To further suppress the remaining noisy false-
positive shadow regions, the second step of our noise re-
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moval approach makes use of a global filtering algorithm
that analyzes the size of each shadow region located in the
image to determine whether the shadow region is prominent
from noise and must be removed. We draw this strategy from
the observation that shadow regions estimated from noise
artifacts are generally small, since noise artifacts tend to be
small and distributed over the image.

To determine the size of a shadow region, we first cluster
each shadow region on the basis of a connected components
labeling algorithm. Connected components labeling aims to
cluster different, connected regions of an image, associating
a unique identifier (ID) to each one of them (Figure 1-(p)).
To perform the clustering of the pixels that belong to the
same shadow regions, we have used the fast and accurate
connected components labeling algorithm proposed in [5].
In this algorithm, labeling is performed in two steps, in a
block-based manner. In the first step, shadow pixels located
in the same 2× 2 block belong to the same shadow region
and are associated with a unique label. Then, a decision table
is used to check whether different labels are equivalent to
the same shadow region. Finally, in the second step of the
algorithm, each pixel in a shadow region is assigned to an
ID that is representative of the shadow region in which the
pixel belongs to. A false-color result of the application of
this connected components labeling over a binary image is
shown in Figure 1-(p).

After locating the pixels that belong to the same shadow
region, we can count the number of pixels of each shadow
region and discard the noisy false-positive shadow regions
whose sizes are lower than ω percent of the image, shadow
regions that possibly contain noisy pixels incorrectly esti-
mated to be in shadow. As shown in Figure 1-(q), this so-
lution effectively suppresses remaining artifacts, enhancing
the final shadow detection.

4 GPU-Based Shadow Detection

In this section, we show how the pipeline depicted in Figure
1 can be fully parallelized for GPU architectures.

The first step of color space conversion (Section 3.1) can
be easily implemented in a single kernel on the GPU. Since
the color space conversion operation is pixel independent,
each thread is able to compute gray, Cb and b* intensities
of the corresponding pixel in the input RGB image in paral-
lel. Also, each thread may copy the corresponding individ-
ual red, green and blue channels of the input RGB image
into separate images, resulting the generation of the images
shown in Figures 1-(b, c, d, e, f, g). To further optimize this
solution, all the images may be stored in pitched memory,
favoring coalesced memory access.

The next step consists in the mean intensity estimation
for each one of the six images previously computed. To solve

this problem, efficient parallel prefix sum [8] can be used to
sum the pixel intensities of each image and estimate their
mean values.

Similarly to color space conversion, mean thresholding
(Section 3.2) is inherently a pixel-independent operation that
can be performed in a single kernel. In this case, each thread
may perform in-place binarization of its corresponding pixel
in each one of the six channels in parallel, according to Eq.
(1).

The multi-channel method for shadow detection (Algo-
rithm 1) is easily parallelizable, since the algorithm mostly
consists of pixel-independent operations between distinct bi-
nary images (Lines 2-12, 14-16 of Algorithm 1). The excep-
tion to this rule happens in the counting step of Line 13 of
Algorithm 1, that requires the use of parallel prefix sum for
efficient GPU computation.

As we show in Section 3.3, our filtering algorithm con-
sists of local and global filtering strategies for false-positive
shadow region removal. As for the local filtering algorithm
that aims to minimize noisy false-positive shadow and non-
shadow pixels, a simple box filtering is used in Eq. (2) to de-
termine whether a region inside the filter kernel is dominated
by shadow pixels and change the intensity of the center pixel
accordingly. Considering that box filter is a separable spatial
linear filter, efficient solutions that use shared memory and
coalesced memory access already exist for optimized filter-
ing [19].

Our global filtering strategy to minimize false-positive
shadow regions determines the size of the shadow regions by
means of connected components labeling and removes the
shadow regions whose sizes are smaller than a pre-defined
threshold. Rather than adapting the CPU-based solution pro-
posed in [5] to the GPU, we make use of the optimized GPU-
based connected components labeling strategy proposed in
[3]. In this algorithm, the image is divided into separate
blocks. Then, each pixel located in a shadow region is com-
pared to its neighbours in the same block in a row-column
order to determine whether they are in the same shadow re-
gion. The value and the label of each pixel are loaded into
the shared memory to speed up the local labeling process.
In the next step, the algorithm scans the pixels located in
the boundary of each block to solve label equivalences to
the same shadow region. In the final step, the algorithm as-
sociates each pixel to the unique ID of the shadow region
where it is located.

The GPU-based connected components labeling algo-
rithm outputs, for each pixel located in the shadow region,
the ID of the shadow region in which the pixel is located.
The shadow region ID is typically the position of a pixel
that represents the shadow region. In this sense, special care
must be taken on how to use this data to perform noisy
false-positive shadow region removal entirely on the GPU.
A naı̈ve approach would be to calculate a histogram over
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Fig. 4 Given a clustered image with non-normalized shadow region
IDs (a), we first binarize such an image by assigning to intensity 1 the
representative pixels of each shadow region (b). Then, the parallel pre-
fix sum is computed over the image to estimate the number of shadow
region N in the image (c), to allow the building of a vector with only
shadow region IDs (d). Next, a hash image is built to assign the new
shadow region ID of the representative pixels (e). Afterwards, this hash
image is used to update the original clustered image with normalized
shadow region IDs (f). Finally, a histogram (g) is computed over the
normalized shadow region IDs, to allow noisy false-positive shadow
region removal (h).

the clustered image (i.e., the image with each shadow region
represented by a unique ID), in order to obtain, for each
shadow region ID, the number of pixels located inside it.
Without knowing in advance the number of shadow regions
N in the image, the range of values to be considered by the
histogram would be to the order of the image size, increas-
ing the memory requirements and decreasing the processing
time of the histogram calculation. To optimize this approach,
let us call representative pixels the pixels that are located in
a position that matches a shadow region ID. By the bina-
rization of the clustered image (Figure 4-(a)), assigning the
value 1 for the representative pixels of the shadow regions
(Figure 4-(b)), and 0 otherwise, we can estimate N by run-
ning the parallel prefix sum over such a binary cluster image
(Figure 4-(c)). Afterwards, we copy only the shadow region
IDs to a smaller vector, whose size is N (Figure 4-(d)). Such
a smaller vector is used to build a hash structure, whose key
is the previous shadow region ID, and whose value is the
new normalized ID, that goes from 1 to N (Figure 4-(e)). On
the basis of this hash structure, we update the clustered im-
age (Figure 4-(f)), and calculate the histogram of the image
for N bins (Figure 4-(g)). Finally, for each thread, in parallel,

(a) Original Images (b) Incorrect Shadow Masks

Fig. 5 The regions inside the red rectangles show shadow pixels (a)
that are not included in the ground-truth shadow masks (b). These im-
ages (a) are incorrectly labeled (b) in the UCF dataset.

the algorithm checks if a given pixel falls in a shadow region
whose histogram returns that the shadow region size occu-
pies less than ω percent of the image. In this case, the pixel
is considered to be located in a false-positive shadow region
and is further discarded from the image (Figure 4-(h)).

As we show in the next section, the proposed GPU so-
lution is able to speed up the processing time of the shadow
detection, mainly for high-resolution image sizes.

5 Results and Discussion

In this section, we evaluate different shadow detection tech-
niques in terms of accuracy and processing time. As shown
in Section 2, a large amount of works has been proposed in
this field. However, we restrict our evaluations to the works
that have been evaluated in the most recent, large-scale, data
sets available in the literature. In this sense, we compare our
real-time shadow detection approach, hereafter named as
RTSD or RTSD-CPU/RTSD-GPU to differentiate CPU and
GPU versions of our algorithm, with the traditional Unary-
Pairwise technique of Guo et al. [6] and the latest state-
of-the-art techniques: Stacked-CNN of Vicente et al. [24],
Patched-CNN of Hosseinzadeh et al. [9], scGAN of Nyugen
et al. [18], D-Net of Le et al. [14], ST-CGAN of Wang et al.
[26] and DSC of Hu et al. [10].

5.1 Experimental Setup

All the running time measurements shown in this section
were performed on a personal computer equipped with an
NVIDIA GeForce GTX Titan X graphics card and an Intel
CoreTM i7-3770K CPU (3.50 GHz), 8GB RAM. Processing
time was evaluated only for the techniques whose source
codes were gently provided by the authors of related work.



8 Márcio C. F. Macedo et al.

We have implemented our approach using OpenCV 2.3.1
[2] and CUDA 4.2 [13] with the NPP library1. Thrust li-
brary2 was used to perform the vector compression shown
in Figure 4-(d).

As discussed in Section 2, four datasets have already
been proposed in the literature for shadow detection eval-
uation:

– UCF dataset [27] is a manually-labeled dataset, that
contains a lot of shadow pixels who were not properly
labeled in the ground-truth mask (Figure 5). Moreover,
authors of related work diverge in the number of testing
images that can be used in the UCF dataset (for instance,
Zhu et al. [27] used 120 images for test, Shen et al. [21]
used 245 images, Khan et al. [11,12] used 255 images,
and Le et al. [14] used 111 images), making their accu-
racy estimates inconsistent;

– UIUC dataset [6] is a small-scale dataset labeled by
checking the difference between shadow and non shadow
images. Most of the images in the dataset contain shad-
ows cast by a single object. Also, the dataset contains
only 76 images for shadow detection evaluation. More-
over, as shown in Figure 6, this dataset also contains im-
ages with inaccurate shadow labeling [22,23]. That is
why recent approaches are not using UIUC dataset for
validation of their works [9,18,14];

– SBU dataset [24] is a large-scale dataset labeled using
lazy annotation and contains 638 testing images. The
dataset contains images that cover a large range of sce-
narios, such as beach, mountain, road, and snow;

– ISTD dataset [26] is a large-scale dataset that enables
simultaneous shadow detection and removal. The dataset
contains 540 testing images that vary mainly in terms of
illumination and shadow shapes;

In this sense, we have chosen to evaluate our approach in
the SBU and ISTD datasets, since they are the most recent
datasets, provide more than 500 images for shadow detec-
tion evaluation, and contain less annotation errors than the
other UCF and UIUC datasets.

To perform the quantitative evaluation, we compare the
binary shadow masks generated by our approach with the
ground-truth masks provided by the datasets. Accuracy is
evaluated in terms of mean shadow pixel accuracy, mean
non-shadow pixel accuracy, and Balance Error Rate (BER)
metric

BER = 50(
T P

T P+FN
+

T N
T N +FP

), (3)

where T P, T N, FP and FN values represent the total num-
ber of true positive, true negative, false positive and false

1 https://developer.nvidia.com/npp
2 https://thrust.github.io/

(a) Original Images (b) Incorrect Shadow Masks

Fig. 6 The regions inside the red rectangles show shadow pixels (a)
that are not included in the ground-truth shadow masks (b). These im-
ages (a) are incorrectly labeled (b) in the UIUC dataset.

Table 1 The list of parameters used by our approach.

Parameter Value
αr 1.0
αg 0.9
αb 1.0

αgray 0.9
αCb 0.9
αb∗ 1.05
β 0.25
κ 16
φ 0.49
ω 0.6

negative pixels. Natural images typically contain much more
non-shadow pixels than shadow pixels. In this sense, the
BER metric is less biased than the mean pixel accuracy met-
ric, because it provides a more balanced evaluation between
both shadow and non-shadow classes.

With respect to performance, we evaluate the processing
time of the different techniques for conventional image res-
olutions typically found in augmented reality applications:
480p, 720p, 1080p and 2160p.

In Table 1, we show the value of the parameters de-
scribed in Section 3. These values are the ones that provided
us the best results in the training sets of both SBU and ISTD
datasets and were used by our algorithm in the test sets of
these datasets.

Finally, in addition to the results shown in this section,
we show the temporal coherence obtained by our approach
in the supplementary video.

5.2 Accuracy Evaluation

In this section, we evaluate the accuracy obtained by our
shadow detection algorithm both quantitatively and qualita-
tively, as described in the next subsections.
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(a) Original Image (b) Ground-Truth (c) RTSD (96.6) (d) DSC (98.7)

(e) D-Net (98.4) (f) scCGAN (84.1) (g) Stacked-CNN (95.6) (h) Patched-CNN (57.0)

Fig. 7 A visual comparison between our approach (RTSD) and different shadow detection techniques for an image with a shadow projected on a
paper. Name and BER accuracy are displayed for each method. Images in columns (d), (f), (g) and (h) are courtesy of [10].

(a) Original Image (b) Ground-Truth (c) RTSD (96.2) (d) DSC (98.9)

(e) D-Net (99.2) (f) scCGAN (95.5) (g) Stacked-CNN (95.0) (h) Patched-CNN (84.2)

Fig. 8 A visual comparison between our approach (RTSD) and different shadow detection techniques for a snow scenario. Name and BER accuracy
are displayed for each method. Images in columns (d), (f), (g) and (h) are courtesy of [10].

Table 2 Ranking of several shadow detection techniques on the SBU
dataset. All methods are trained on the SBU training set, and evaluated
on the SBU testing set. BER, mean shadow pixel, mean non-shadow
pixel metrics are evaluated in terms of percentage of accuracy, where
the higher the value is, the better the shadow detection result is. NRA -
Not reported by the authors

Method BER Shadow Non-Shadow
Unary-Pairwise [6] 86.0 NRA NRA
Patched-CNN [9] 88.8 89.9 87.7

Stacked-CNN [24] 89.0 90.4 87.5
RTSD 89.4 90.2 88.7

scCGAN [18] 90.9 92.2 89.6
ST-CGAN [26] 91.9 96.3 87.5

D-Net [14] 94.3 93.8 94.8
DSC [10] 94.4 NRA NRA

5.2.1 Quantitative Evaluation

In Table 2, we compare the accuracy obtained by the pro-
posed approach with respect to related work on the SBU
dataset. Our technique is more accurate than the previous
techniques that used handcrafted features [6,9] and that one
of the first techniques that used deep learning for shadow
detection [24]. Moreover, our approach is only 5% less ac-
curate than the state-of-the-art technique evaluated in this
dataset [10].

In Table 3, we compare the accuracy obtained by the pro-
posed approach on the very recent ISTD dataset. As shown
in Table 3, a few techniques have been evaluated in the ISTD
dataset. Despite this fact, our approach is again more accu-
rate than the Stacked-CNN technique [24], in terms of BER
and non-shadow pixel metrics. Moreover, our approach is
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(a) Original Image (b) Ground-Truth (c) RTSD (93.9) (d) DSC (98.1)

(e) D-Net (96.7) (f) scCGAN (72.9) (g) Stacked-CNN (66.2) (h) Patched-CNN (69.2)

Fig. 9 A visual comparison between our approach (RTSD) and different shadow detection techniques for a challenging scenario with trees and
sand. Name and BER accuracy are displayed for each method. Images in columns (d), (f), (g) and (h) are courtesy of [10].

(a) Original Image (b) Ground-Truth (c) RTSD (82.5) (d) DSC (89.7)

(e) D-Net (96.6) (f) scCGAN (83.9) (g) Stacked-CNN (70.7) (h) Patched-CNN (73.4)

Fig. 10 A visual comparison between our approach (RTSD) and different shadow detection techniques for a challenging scenario with shadows
projected by a gray object. Name and BER accuracy are displayed for each method. Images in columns (d), (f), (g) and (h) are courtesy of [10].

Table 3 Ranking of several shadow detection techniques on the ISTD
dataset. All methods are trained on the ISTD training set, and evaluated
on the ISTD testing set. BER, mean shadow pixel, mean non-shadow
pixel metrics are evaluated in terms of percentage of accuracy, where
the higher the value is, the better the shadow detection result is.

Method BER Shadow Non-Shadow
Stacked-CNN [24] 91.4 92.0 90.8

RTSD 91.5 89.8 93.2
scCGAN [18] 95.3 96.8 93.8

ST-CGAN [26] 96.2 97.9 94.5

only 4.7% less accurate than the state-of-the-art technique
on the ISTD dataset [26].

Table 4 The contribution of each step of the proposed approach in the
final accuracy of the solution, measured by the BER metric for both
SBU and ISTD datasets.

Step BER (SBU) BER (ISTD)
Gray-channel binarization 85.86 87.6
RGB-channel binarization (+1.09) 86.95 (+0.09) 87.69
Cb-channel binarization (+0.65) 87.6 (+0.04) 87.73
b*-channel binarization (+0.4) 88.0 (+0.49) 88.22

Noise removal (+1.41) 89.41 (+3.25) 91.47

In Table 4, we analyze the improvement, in terms of
BER metric, provided by each one of the steps used in our
real-time shadow detection algorithm. The mean binariza-
tion of the gray channel provides a good shadow detection
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96.1 89.0 98.3

98.4 98.6 98.3

98.6 99.0 98.4

(a) Original Image (b) Ground-Truth (c) RTSD (98.2) (d) DSC (99.2) (e) D-Net (98.3)

Fig. 11 A visual comparison between our approach (RTSD) and state-of-the-art shadow detection techniques for different scene conditions. BER
accuracy is displayed below each image.

rate, being as accurate as the solution proposed by Guo et al.
[6] (see BER metric for Unary-Pairwise technique in Table
2). The use of multi-channel binarization improves the ac-
curacy of the shadow detection mostly for the SBU dataset,
because this dataset contains more scenarios with blue skies,
trees, and other regions whose one of the R, G, B, Cb and
b* channels are too high. The ISTD dataset, otherwise, con-
tains a lot of images captured with a typical street with gray
floor. Our approach for noisy false-positive shadow region
removal works well for both datasets, greatly reducing the
noise artifacts generated by the multi-channel binarization
and further improving the accuracy of the solution.

5.2.2 Qualitative Evaluation

In Figures 7, 8, 9, 10, we compare our approach with differ-
ent shadow detection techniques proposed in the literature.
For the scenarios shown in Figure 7 and 8, our approach
(Figures 7-(c) and 8-(c)) is able to detect the shadows accu-

rately, being competitive against most of related work (Fig-
ures 7-(d, e, f, g) and 8-(d, e, f, g)). Patched-CNN fails for
both scenarios (Figures 7-(h) and 8-(h)). For the more com-
plex scenario shown in Figure 9, with distinct objects (e.g.,
trees, sand) present in the same scene, our approach fails to
detect the light post as a non-shadow region (Figure 9-(c)).
Despite this fact, our approach is still more accurate than
some of the related work that incorrectly detect the trees as
shadow regions (Figure 9-(f, g, h)). The major drawback of
our approach is that it is not able to differentiate shadows
from shadow casters, when the shadow casters are objects
as dark as the shadows they cast in the scene. This fact is
mainly visible in Figure 10, where the object that casts the
shadow is mostly gray, slightly brighter than the shadow that
it casts. Since the shadow region has a similar intensity than
the shadow caster, our algorithm incorrectly assumes the
shadow caster as shadow (Figure 10-(c)). We could not de-
fine a criteria able to easily handle this scenario, while keep-
ing the real-time performance of the solution. On the other
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Table 5 Processing time of each individual step of the proposed
shadow detection technique for different image resolutions and pro-
cessing units.

Output Resolution (ms)
Unit Step 480p 720p 1080p 2160p

Color conversion 2.45 7.97 17.35 68.11
Mean estimation 0.38 1.18 2.50 9.86

CPU Multi-channel bin. 1.41 4.08 9.43 35.37
Noise removal 2.13 6.11 14.73 51.75

Total 6.37 19.34 44.01 165.09
Color conversion 0.38 0.43 0.88 2.06
Mean estimation 1.72 1.76 1.91 2.05

GPU Multi-channel bin. 1.00 1.10 1.16 1.99
Noise removal 1.74 1.95 3.07 6.83

Total 4.84 5.24 7.02 12.93

hand, the same problem is shared by most of related work
(Figure 10-(f, g, h)), except for the state-of-the-art shadow
detection techniques [14,10], that are able to solve this prob-
lem accurately (Figure 10-(d, e)).

Aided by the results shown in Table 2 and visible in Fig-
ures 7, 8, 9, 10, we can further state that Stacked-CNN [24]
and Patched-CNN [9] are less accurate than our approach
because, even for simpler scenarios such as the one shown
in Figure 8, they fail to detect non-shadow regions, overes-
timating the presence of shadows in the scene. This fact can
be seen in Figures 8-(h) and 9-(g, h). The approach of sc-
CGAN [18] is competitive against our approach, since we
share the same limitation of detecting dark shadow casters
as shadows, as shown in Figure 10-(f). Finally, D-Net [14]
and DSC [10] are the state-of-the-art shadow detection tech-
niques because their deep learning architectures were well
designed to detect shadows even for challenging scenarios
such as the one shown in Figure 10. Nevertheless, as visi-
ble in Table 2, our approach is only 5% less accurate than
both techniques. Moreover, as we show in Figure 11, our
approach (Figure 11-(c)) is able to perform shadow detec-
tion as accurately as the state-of-the-art techniques (Figure
11-(d, e)) for a variety of scene conditions. These include
scenes with small (shadows cast by the airplane in Figure
11-top), large (desert-like region in Figure 11-middle) por-
tions of shadows present in the scene and different weather
conditions (snow in Figure 8 and 11-bottom). These results
leverage the importance of the proposed algorithm, in the
sense that we can achieve high accurate shadow detection
results while keeping the real-time performance of the tech-
nique.

5.3 Processing Time Evaluation

In Table 5, we compare the processing time of our approach
for each step of both CPU and GPU implementations for
varying image resolutions. Our CPU implementation pro-
vides real-time performance for images with resolution up

Table 6 Ranking of the processing time (in seconds) obtained by sev-
eral shadow detection techniques for images with different resolutions.

Output Resolution (s)
Method 480p 720p 1080p 2160p

Stacked-CNN [24] 69.91 78.11 375.68 484.70
Unary-Pairwise [6] 19.80 50.74 94.94 205.80
Patched-CNN [9] 1.37 1.43 6.12 7.53

D-Net [14] 0.032 0.096 0.21 0.87
RTSD - CPU 0.006 0.019 0.044 0.165
RTSD - GPU 0.0048 0.0052 0.007 0.013

to 720p. On the other hand, our GPU implementation pro-
vides real-time performance (more than 80 frames per sec-
ond) even for a 2160p image resolution, being one order of
magnitude, or, more exactly, 12 times faster than the CPU
implementation for the same image resolution. So, our GPU
implementation is more scalable than the CPU implemen-
tation for high image resolutions, providing real-time per-
formance regardless of the image resolution used. In Table
5, we can also see that, in both processing units, noise re-
moval is one of the slowest steps of our approach, because it
requires a relative high number of memory accesses to per-
form the computations. On the other hand, as we can see in
Table 4, this step is essential to improve the accuracy of the
shadow detection.

In Table 6, we provide a comparison between the pro-
cessing times obtained by our approach and related work.
Stacked-CNN [24] is the slowest shadow detection tech-
nique because it uses a Fully Connected Network (FCN)
to predict a shadow probability map from the original im-
age, merges such a map with the original image, then di-
vides both into overlapping patches of size 32×32, that are
used as input for a CNN to predict local shadow pixels. Fi-
nally, the final shadow prediction of each pixel is given by a
weighted average over the prediction outputs for the patches
that contain each pixel. The use of a Fully Connected Net-
work together with a CNN that runs for every overlapping
32× 32 patch of the coupled original + shadow probability
images makes the approach too costly, even for interactive
applications, easily achieving more than 50 seconds for a
low-sized image resolution of 480p. Only for reference, our
GPU-based real-time shadow detection that relies mostly on
pixel independent operations is 14,564 times faster than the
Stacked-CNN approach, being up to 4.6 orders of magni-
tude (37,284 times) faster than Stacked-CNN for a high-
resolution 2160p image.

Unary-Pairwise [6] is faster than Stacked-CNN because,
rather than running a CNN for every overlapping 32× 32
patch of an image, the algorithm uses handcrafted features
extracted from superpixels to predict a shadow probability
map from an SVM. Then, another SVM is used to compare
the shadow probabilities estimated by different regions of
the image to ensure that regions with the same material are
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classified in the same way. However, as shown in Tables 6
and 2, Unary-Pairwise is still too slow and inaccurate for
interactive applications.

To optimize the processing time of Stacked-CNN, the
Patched-CNN [9] merged the solutions proposed by Stacked-
CNN and Unary-Pairwise techniques: replaced the FCN by
the use of an SVM with handcrafted features. Also, rather
than running the CNN for every pixel inside the 32× 32
patches, the network is run on the basis of superpixels previ-
ously segmented. As shown in Table 6, the use of super-
pixels for CNN prediction greatly reduces the processing
time demanded by the shadow detection. However, even in
this case, the technique is still inadequate for real-time appli-
cations, demanding more than 1 second to perform shadow
detection even for low-sized images.

D-Net [14] is faster than related work by the use of an
adversarial shadow attenuation network for shadow detec-
tion. This network is pretty much smaller than the ones based
on CNN because it requires only four modules with three
layers each to provide accurate shadow detection results. D-
Net technique is able to detect shadows in less than 1 second,
but is≈ 5 times slower than the CPU implementation of our
algorithm, 6.6 times slower than our GPU implementation
for a small image resolution (e.g., 480p), and 1.8 orders of
magnitude (66 times) slower than our GPU implementation
for a high image resolution (e.g., 2160p).

The DSC algorithm [10] extracts multi-scale features of
an input image and fed these features to a spatial Recurrent
Neural Network, that predicts shadow probability maps to
produce the final shadow detection. Although we have not
tested the DSC algorithm [10] for different image resolu-
tions, it was reported by the authors that the algorithm takes
0.175 seconds to run their algorithm for an image with input
size of 400× 400 in an NVIDIA GeForce Titan X (Pascal)
and an Intel Core i7. In this sense, their algorithm, running
on a low-sized image, is slower than both CPU and GPU
implementations of our approach when running at a 2160p
image resolution (see the performance of RTSD in the last
column of Table 6).

As can be seen in Table 6, by relying mostly on pixel-
wise independent operations, only our GPU implementation
consumes less than 15 milliseconds of processing time for
the typical image resolutions evaluated. Hence, for high im-
age resolutions, our approach provides a huge speedup over
related work, being adequate for real-time applications that
demand the shadow detection step to run as fast as possible.

6 Conclusion and Future Work

In this paper, we have presented a real-time algorithm for
shadow detection that can be fully implemented in both CPU
and GPU architectures. By converting the input colored im-
age into different color spaces, we are able to perform a

multi-channel binarization that gives a coarse estimate of
where the shadow regions are located in the image. To fur-
ther refine the shadow detection and minimize the presence
of noisy, false-positive shadow regions previously detected,
we employ an efficient noise removal algorithm that uses
local and global strategies to remove small-sized incorrect
shadow regions. We could show that, with our approach, we
provide shadow detection as accurate as related work, but
at a significantly less processing time. In this sense, we be-
lieve that our approach is ready to be used for robotic and
augmented reality applications that require the shadow de-
tection to run in real time.

In terms of accuracy, our approach is not able to differen-
tiate dark objects from their shadows. For future work, one
may investigate the use of alternative features to improve the
shadow detection, while keeping the real-time performance
of the solution. Also, our work could be further extended
to support real-time shadow detection and shadow removal
fully parallelized on the GPU.
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